Forskere efterlyser bæredygtig og ansvarlig AI-udvikling

Udviklingen af AI-modeller er en overset klimasynder. Forskere fra Københavns Universitet har lavet en opskriftsbog over AI-modeller, der kan yde det samme, men bruger meget mindre energi. Energiforbruget og klimaaftrykket bør være et fast parameter, når man designer og træner AI-modeller, mener forskerne.

Et studie anslår, at AI-servere i 2027 vil have et lige så stort elforbrug som Argentina eller Sverige. Foto: 123rf.com

08.04.2024

SCM.dk

At det koster kolossale mængder energi, når vi googler, taler med Siri, spørger ChatGPT om noget eller på andre måder bruger AI, er efterhånden blevet almen viden. Et studie anslår, at AI-servere i 2027 vil have et lige så stort elforbrug som Argentina eller Sverige. Og en enkelt forespørgsel til ChatGPT er anslået til i gennemsnit at sluge lige så meget energi som 40 opladninger af en mobiltelefon. Men på forskningsfeltet og i branchen har man stadig ikke fokus på at udvikle AI-modeller, som er energieffektive og derfor har et mindre CO2e-aftryk. Det påpeger forskere fra Københavns Universitet.

“Udviklerne har i dag et snævert fokus på at bygge AI-modeller, der er effektive i form af, hvor præcist et resultat, de kan opnå. Det svarer til at sige, at en bil er effektiv, fordi den får dig hurtigt frem, men ignorerer den mængde brændstof, den bruger. Og det har resulteret i AI-modeller, som ofte er ineffektive i form af energiforbrug”, siger adjunkt Raghavendra Selvan fra Datalogisk Institut, som forsker i mulighederne for at sænke CO2e-aftrykket fra AI.

Men det nye studie, som han og datalog-studerende Pedram Bakhtiarifard er to af forfatterne bag, viser, at man sagtens kan spare masser af CO2 uden at gå på kompromis med AI-modellens præcision. Det kræver, at man har klimaomkostninger for øje allerede i AI-modellernes design- og træningsfase.

”Hvis man fra start sammensætter en model, der er energieffektiv, mindsker du både CO2e-aftrykket i alle faser af modellens ’livscyklus’. Det gælder både i træningen af den, som er en særlig energitung proces, der ofte tager uger eller måneder, og i anvendelsen af den”, siger Raghavendra Selvan.

I studiet har forskerne beregnet, hvor meget energi, det kræver at træne over 400.000 AI-modeller af typen convolutional neural networks – dog uden faktisk at træne alle modellerne. Convolutional neural networks bruges blandt andet til at analysere medicinske billeder med, til sprogoversættelse og til genkendelse af objekter og ansigter – en funktion, du måske genkender fra kamera-app’en på din egen smartphone.

På baggrund af beregningerne præsenterer forskerne en samling af AI-modeller, som bruger mindre energi på at løse en given opgave, men som yder cirka det samme. Studiet viser, at man enten ved at vælge andre slags modeller eller justere på modellerne kan spare 70-80 procent energi i trænings- og implementeringsfasen og kun gå 1 procent eller mindre ned i ydeevne. Og det er ifølge forskerne et konservativt estimat.

”Man kan se vores resultater som en opskriftsbog, som AI-fagkyndige kan slå op i. Opskriftsbogen fortæller ikke bare, hvor godt de forskellige algoritmer yder, men også hvor energieffektive de er. Og at man ved at skifte en ingrediens ud med en anden i opbygningen af modellen, ofte kan opnå samme resultat. Så nu kan fagfolk vælge den model, de ønsker ud fra både ydeevne og energiforbrug og uden at skulle træne hver enkelt model først”, siger Pedram Bakhtiarifard og fortsætter:

”Ofte træner man nemlig mange modeller, før man finder den, man synes er mest egnet til at løse en bestemt opgave. Det gør udviklingen af AI ekstra energitung. Derfor ville det være mere klimavenligt, hvis man vælger den rigtige model i første hug og samtidig vælger en model, der ikke sluger alt for meget strøm i træningsfasen”.

Læs også: Pallerobot revolutionerer pallehåndtering med kunstig intelligens

Forskerne understreger, at på specifikke felter som selvkørende biler eller visse medicinske områder kan modellens præcision dog være afgørende for sikkerheden, og her er det vigtigt ikke at gå på kompromis med ydeevnen. Men dette bør ikke afholde fra at gå efter høj energieffektivitet i andre domæner.

“AI har et fantastisk potentiale. Men skal vi sikre en bæredygtig og ansvarlig AI-udvikling, bør vi have en mere holistisk tilgang, der ikke kun har ydeevne for øje, men også klimapåvirkning. Og det kan vi sagtens finde en bedre balance i, viser vi her. Når vi udvikler AI-modeller til forskellige opgaver, bør det derfor være et grundkriterium også at kigge på, hvor energieffektive de er – ligesom det er standard at gøre i mange andre brancher”, slutter Raghavendra Selvan.

Opskriftsbogen, som forskerne har sat sammen i dette studie, er et open-source-datasæt, som andre forskere kan bruge. Informationen om alle de 423.000 AI-modeller er offentliggjort på Github og kan tilgåes ved hjælp af simple Python scripts.

Kilde: Københavns Universitet, Det Natur- og Biovidenskabelige Fakultet

/ PiB

Bredana Axcite A/S

Sponseret

SCM-dagen sætter fokus på optimering af Supply Chain og WMS

Slimstock Nordic

Sponseret

An opinion Making Artificial Intelligence (AI) land in supply chain practice

Relateret indhold

13.06.2025SCM.dk

Nordic Hydrogen bringer grøn brint tættere på kilden

13.06.2025SCM.dk

Danmark kan blive frontløber i europæisk AI-udvikling

11.06.2025Fellowmind Denmark A/S

Sponseret

AURA digitaliserer forretningen med Microsoft Dynamics 365 Finance & Operations

05.06.2025SCM.dk

RFID: Terma Aerostructures indgår partnerskab med Lyngsoe Systems om digital produktionsomstilling

03.06.2025AGR

Sponseret

AGR udvider fra forsyningskædestyring til leverandørstyring

22.05.2025SCM.dk

Cobot sætter nye standarder i kollaborativ automation

22.05.2025Datacon A/S

Sponseret

Case: Munck Gruppen

21.05.2025SCM.dk

Carmo løfter dokumentationen med ny automatiseret CO2-beregner

Hold dig opdateret med SCM.dk

Tilmeld dig nyhedsbrevet og følg med i alt som rører sig indenfor ledelse af forsyningskæden, Nyhedsbrevet kommer kun to gange pr. uge.

Se flere temaer

Events

Se alle
DNV Business Assurance Denmark
Kursus
ISO/IEC 42001: 2023 Artificial Intelligence Management System Foundation

This two-day course provides an overview of the ISO/IEC 42001 standard and essential knowledge required for the establishment, implementation, maintenance, and continuous improvement of a responsible Artificial Intelligence Management System (AIMS).

Dato

16.06.2025

Sted

Online

DNV Business Assurance Denmark
Kursus
ISO/IEC 27001 Lead Implementer – Certificeret af PECB

Få bevis på dine kompetencer som ISO/IEC Lead Implementer med den internationale certificering fra PECB.

Dato

16.06.2025

Sted

Copenhagen

DNV Business Assurance Denmark
Kursus
Kvalitetskultur

Et effektivt ledelsessystem er kernen i en effektiv virksomhed og driver virksomheden frem mod sine strategiske mål. Det effektive ledelsessystem bør derfor forholde sig til sine interessenters behov og forventninger, risici og muligheder, lovkrav og ikke mindst organisationens værdier og kultur.

Dato

16.06.2025

Sted

Odense

DNV Business Assurance Denmark
Kursus
CQI and IRCA QMS Lead Auditorkursus baseret på ISO 9001:2015 (Dansk)

5 dages intensivt kursus der giver dig den fornødne viden og færdigheder, så du efter endt træning kan organisere og lede audits af kvalitetsledelsessystemer baseret på ISO 9001:2015. CQI and IRCA Nr.: 17898

Dato

16.06.2025

Sted

Odense

DNV Business Assurance Denmark
Kursus
APQP4WIND Management Awareness Training

Event Description

Dato

16.06.2025

Tid

08:30

Sted

Online

Fellowmind Denmark A/S
Webinar
Forstå hvad en dansk Azure-region betyder for din virksomhed

Microsofts nye datacenterregion består af tre lokationer i Roskilde, Køge og Høje Taastrup. Her opbevares data lokalt i overensstemmelse med både danske og europæiske regler.

Dato

16.06.2025

Tid

13:00

Sted

Online