5 benspænd for AI i supply chain planlægning

Lanceringen af Open AI’s ChatGPT i november 2022 har betydet, at kunstig intelligens er her, der og allevegne. Det gælder også for supply chain planlægning, hvor der er enorme muligheder. Men der er også faldgruber, og en ekspert peger her på fem af de mest almindelige af slagsen.

”Jeg ser manglen på forklaringsevne, når stormen raser, som et stort benspænd for brug af AI i supply chain planlægning”, fortæller Stephan Skovlund. Foto: Arkivfoto fra 123rf.com.

14.06.2024

Poul Breil-Hansen, SCM.dk

”Det er blot to eksempler på den udbredte brug af kunstig intelligens, der er foregået mange steder i mange år. Men det er nok fløjet under radaren i offentligheden, at det er kunstig intelligens, som har drevet eksemplerne”, fortæller Stephan Skovlund. Han har arbejdet med supply chain planning i mere end 20 år både som konsulent, planlægger hos Carlsberg samt som underviser og har en faglig baggrund inden for statistik. Det gør han sammen med vært Søren Hammer Pedersen i Roima Intelligences podcast ‘S&OP MasterClass episode 14: 5 pitfalls using AI in supply chain planning and how to mitigate them’.

Læs også: Sådan kommer du i gang med AI i supply chain planning

Han supplerer: ”Kunstig intelligens (AI) er faktisk mange forskellige ting, og der er mange ’bevægelige dele’ i spil, når vi taler kunstig intelligens. Der er både sprogmodeller (som for eksempel ChatGPT og Googles Gemini, red.). machine learning og image modeller, som fungerer forskelligt og kan forskellige ting”.

Det kan være en stor fordel at starte med AI-implementeringer fra rammens område for lav tilpasning og relativ lav værdi, fordi det også medfører lav risiko og relativ høj læring

Stephan Skovlund

Han mener, det overordnet set kan være nyttigt at plotte AI ind i en ramme med en Y- og X-akse, hvor Y-aksen er graden af tilpasning fra lav til høj, og X-aksen er værdi fra lav til høj. Længst til venstre på Y-aksen repræsenterer ’out of the box’ løsninger, hvor der er lav tilpasning og også relativ lav værdi.

”Det kan være en stor fordel at starte med AI-implementeringer fra rammens område for lav tilpasning og relativ lav værdi, fordi det også medfører lav risiko og relativ høj læring”, fortæller han.

Det fører naturligt til den første faldgrube, som supply chain afdelinger og ledere med fordel kan være opmærksomme på.

1)Pas på med forståelsen og forklaringsevnen
AI-baserede modeller, der foretager mere avancerede opgaver og analyser, som fungerer som basis for at foretage forretningsbeslutninger, indebærer en risiko for, at det kan være svært at forklare, hvad der foregår i modellen, når verden falder fra hinanden. Og verden falder jo fra hinanden med regelmæssige mellemrum, som vi for nylig har erfaret med covid 19-pandemien og efterfølgende forsyningskaos, geopolitiske spændinger, krige og andre større forstyrrelser.

”Når stormen rammer din virksomhed, opstår der hurtigt et behov for, at du skal kunne forklare modellens outcome. Det bliver almindeligvis kaldt ’explainability’, når vi taler AI. Og det kan være vanskeligt. Det kræver en dyb forståelse af, hvordan modellen fungerer. Jeg ser manglen på forklaringsevne, når stormen raser, som et stort benspænd for brug af AI i supply chain planlægning”, fortæller Stephan Skovlund.

Læs også: Stort tema om kunstig intelligens i forsyningskæden

På vært Søren Hammer Pedersens spørgsmål om, hvordan planlæggere så forebygger denne faldgrube, lyder anbefalingen fra Stephan Skovlund sådan:

”Du kan enten udvikle kompetencen selv inhouse, hvilket kræver en del, og nok kræver, at du er en del af en større organisation med mange ressourcer. Eller du kan teame up med en leverandør eller partner, der har denne kompetence som en del af forretningskernen, og som har bygget det ind i deres service”.

2) AI kræver ressourcer og træning
Kunstig intelligens er automatisering, men det handler ikke bare om at trykke på en knap, og så kører det per automatik.

”ChatGPT og andre såkaldt store sprogmodeller (LLMs, large language models, red.) kræver en del hands-on håndtering. Hvis man ikke gør det, vil man hurtigt få problemer med kvalitet af de løsninger, sprogmodellen foreslår”, fortæller Stephan Skovlund.

Han nævner en række eksempler som:

  • AI er følsom over for dataændringer og nye datamønstre. 
  • Eksempelvis faldt ChatGPT’s datakvalitet i en periode, fordi mængden af data steg helt enormt. Det gav flimmer i sprogmodellens datahåndtering. Det er nødvendigt løbende at træne og vedligeholde sprogmodellens håndtering af egne data.
  • Det er nødvendigt løbende at validere, rense og sikre AI modellernes kvalitet, så de ikke kører af sporet. Et velkendt fænomen er, når en AI model begynder at ’drifte’, det vil sige at forecaste systematisk for højt eller lavt. 
  • Stephan Skovlund fremhæver, at brug af kunstig intelligens i supply chain planlægning kaster nye opgaver af sig. Så selvom AI kan spare ressourcer, så kræver AI omvendt også, at der rettes opmærksomhed på data, der indgår i at træne modellen, og at konsistensen af modellens output løbende valideres.

3) Hold øje med der svageste data-led i kæden
Stephan Skovlund peger på, at han ofte stæder på den udbredte misforståelse, at ’jo flere data, jo bedre’. Han mener, det mere handler om ’jo højere kvalitet af data, jo bedre’. Det er hans erfaring, at de fleste virksomheder har udfordringer med kvaliteten af stamdata, og det er en udfordring, når man arbejder med AI. Men han fremhæver også, at virksomheden ikke nødvendigvis har kvalitetsproblemer med alle stamdataene og supplerer:

”Jeg vil faktisk anbefale, at virksomheder fokuserer på, hvor lidt data – eller minimumsbehovet – der er brug for til et specifikt AI-projekt, og så begrænse sig til disse data. En mindre mængde data i høj kvalitet vil næsten altid give et bedre resultat end en stor mængde tvivlsomme data. Det vil være et godt udgangspunkt, og så er det altid muligt at bygge videre på et senere tidspunkt, når tid, data og kompetencer er blevet modne til det”.

Han peger også på, at AI faktisk kan hjælpe med at rense og løfte kvaliteten af data, fordi AI har det, fagfolk kalder ’critical reasoning ability’.

”Men brug af AI til datahygiejne kræver træning på ’use cases’, så sprogmodellen får en god idé om hvilke mønstre, der er på spil her. Virksomheder bruger traditionelt ’alerts’ til at håndtere afvigelser, men alerts fanger ikke gråzoner. Det kan AI. Og det er værdifuldt, fordi stamdata i varierende kvalitet er en udfordring i stort set alle virksomheder”, fortæller Stephan Skovlund.

4) Hold øje med at AI ikke lærer de forkerte ting
Som tidligere nævnt mener Stephan Skovlund, at der er mange store muligheder i at anvende AI til at understøtte supply chain planlægning, men han mener også, at det er ikke bare er plug-and-play. 

”AI kræver meget træning på virksomhedens data, processer, regler, logikker etcetera, der er specifikke for virksomheden. Hvis man forsømmer det, kan AI let af sig selv begynde at ’finde på’ ting (’hallucinerer’, red.) og så at sige lære de forkerte ting. AI har som sagt evnen til selv at ræsonnere, men det kræver opmærksomhed og styring, ellers går det let galt”.

5) Vær opmærksom på medarbejderes tryghed og interesser
Indførelse af kunstig intelligens kan opleves som en stor trussel for de medarbejdere, der arbejder med supply chain planlægning i hverdagen. Det kan det selvfølgelig, fordi AI potentielt kan løse mange af de opgaver, som medarbejderne indtil nu har løst.

”Jeg mener, det er vigtigt at se på helheden, når man indfører AI. Det bør ikke være et spørgsmål om enten medarbejdere eller AI. Det bør i højere grad være et spørgsmål om, hvordan AI i samspil med medarbejdernes erfaring og kompetence kan løfte kvaliteten og resultaterne i planlægningen”, fortæller han og tilføjer:

”Hvis medarbejderne kan anskue det på følgende måde, vil det åbne op for store muligheder: ’AI er et nyt værktøj, som kan utrolig meget. Hvordan kan vi kombinere AI med al den erfaring, viden og kunnen jeg og mine kollegaer besidder, så jeg i kraft af samspillet med AI bliver endnu mere værdiskabende?”.

Bredana Axcite A/S

Sponseret

SCM-dagen sætter fokus på optimering af Supply Chain og WMS

Slimstock Nordic

Sponseret

An opinion Making Artificial Intelligence (AI) land in supply chain practice

Denne artikel er del af et tema:

Tema: De bedste værktøjer til din supply chain planlægning

Usikkerheden hersker i både globale og lokale forsyningskæder. Det skærper kravene til, at virksomheder bliver endnu skarpere på planlægningen i forsyningskæden. SCM.dk dykker ned i de bedste værktøjer, strategier og teknologier, der gør det muligt at håndtere toldkaos og markedsudsving, optimere lagerstyring samt styrke samarbejdet på tværs af værdikæden.

Relateret indhold

12.06.2025Blue Ridge Global

Sponseret

The 7 Essential Elements of Supply Chain Planning

12.06.2025Blue Ridge Global

Sponseret

AI Demand Forecasting: How It Works and Why It’s Replacing Traditional Methods

09.06.2025SCM.dk

God planlægning kan fjerne overflødigt lager for 23 milliarder euro

09.06.2025sophub aps

Sponseret

Demand planning: Stærk løsning giver overskud til at håndtere uro og ustabile varer

06.06.2025Inact ApS

Sponseret

Supply chain modenhed er mere end teknologi

04.06.2025Bredana Axcite A/S

Sponseret

Ny ERP-løsning skal nå vækstmål på 35%

03.06.2025SCM.dk

De fleste virksomheder måler forecast-kvalitet på en dårlig måde

16.05.2025SCM.dk

Best-of-breed software giver mere opdaterede forecast

Hold dig opdateret med SCM.dk

Tilmeld dig nyhedsbrevet og følg med i alt som rører sig indenfor ledelse af forsyningskæden, Nyhedsbrevet kommer kun to gange pr. uge.

Se flere temaer

Events

Se alle
DNV Business Assurance Denmark
Kursus
ISO/IEC 42001: 2023 Artificial Intelligence Management System Foundation

This two-day course provides an overview of the ISO/IEC 42001 standard and essential knowledge required for the establishment, implementation, maintenance, and continuous improvement of a responsible Artificial Intelligence Management System (AIMS).

Dato

16.06.2025

Sted

Online

DNV Business Assurance Denmark
Kursus
ISO/IEC 27001 Lead Implementer – Certificeret af PECB

Få bevis på dine kompetencer som ISO/IEC Lead Implementer med den internationale certificering fra PECB.

Dato

16.06.2025

Sted

Copenhagen

DNV Business Assurance Denmark
Kursus
Kvalitetskultur

Et effektivt ledelsessystem er kernen i en effektiv virksomhed og driver virksomheden frem mod sine strategiske mål. Det effektive ledelsessystem bør derfor forholde sig til sine interessenters behov og forventninger, risici og muligheder, lovkrav og ikke mindst organisationens værdier og kultur.

Dato

16.06.2025

Sted

Odense

DNV Business Assurance Denmark
Kursus
CQI and IRCA QMS Lead Auditorkursus baseret på ISO 9001:2015 (Dansk)

5 dages intensivt kursus der giver dig den fornødne viden og færdigheder, så du efter endt træning kan organisere og lede audits af kvalitetsledelsessystemer baseret på ISO 9001:2015. CQI and IRCA Nr.: 17898

Dato

16.06.2025

Sted

Odense

DNV Business Assurance Denmark
Kursus
APQP4WIND Management Awareness Training

Event Description

Dato

16.06.2025

Tid

08:30

Sted

Online

Fellowmind Denmark A/S
Webinar
Forstå hvad en dansk Azure-region betyder for din virksomhed

Microsofts nye datacenterregion består af tre lokationer i Roskilde, Køge og Høje Taastrup. Her opbevares data lokalt i overensstemmelse med både danske og europæiske regler.

Dato

16.06.2025

Tid

13:00

Sted

Online